• Users Online: 559
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2021  |  Volume : 29  |  Issue : 3  |  Page : 171-175

Evaluation of training in pediatric ultrasound-guided vascular cannulation using a model


1 Department of Pediatric Intensive Care Unit, Unit of Pediatric Intensive Medicine, Mother and Child University Hospital of the Canary Islands; Department of Health Sciences, Fernando Pessoa Canarias University, Santa Maria de Guia, Canary Islands, Spain
2 Department of Pediatric Intensive Care Unit, Unit of Pediatric Intensive Medicine, Mother and Child University Hospital of the Canary Islands, Canary Islands, Spain
3 Department of Health Sciences, Fernando Pessoa Canarias University, Santa Maria de Guia; Department of Interventional Vascular Radiology Unit, Unit of Interventive Vascular Radiology, Mother and Child University Hospital of the Canary Islands, Canary Islands, Spain
4 Departament of Biostatistics, Unit of Support for the Research at the University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
5 Department of Health Sciences, Fernando Pessoa Canarias University, Santa Maria de Guia, Canary Islands, Spain

Correspondence Address:
José Manuel Lopez-Alvarez
Unit of Pediatric Intensive Medicine, Mother and Child University Hospital, Faculty of Health Sciences, Fernando Pessoa Canarias University, Canary Islands
Spain
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/JMU.JMU_109_20

Get Permissions

Background: The study objective was to evaluate a training program and a training model for pediatric ultrasound-guided vascular cannulation (USGVC) by inexperienced operators. Methods: An observational descriptive study was conducted at the pediatric intensive care unit of a level-III hospital. The study protocol comprised the following parts: (1) pretraining test; (2) theory and practice training session consisting of an explanation of basic vascular ultrasound concepts plus performing vascular cannulation in a model; (3) posttraining test; and (4) evaluation of the training model. Results: A total of 25 health-care professionals participated in the study. All of them possessed the skills to locate vessels and ultrasound planes, and they performed USGVC using the training model. On a 1–5 scale, the model was rated to have 87.6% fidelity with real pediatric patients; the best regarded aspect of it was utility (93%). Differences were found between pre- and post-training scores: 2.72 ± 0.84 versus 4.60 ± 0.50; P < 0.001 (95% confidence interval: −2.28, −1.47). Altogether, 300 ultrasound-guided cannulation procedures were carried out (12 per participant) distributed along the longitudinal axis in plane and the transverse axis out of plane, with 150 punctures in each of them. The success rate for USGVC in the training model was 79.7%, the mean time for the procedure was 115.6 ± 114.9 s, and the mean time for achieving successful cannulation was 87.69 ± 82.81 s. The mean number of trials needed for successful USGVC was 1.49 ± 0.86. Conclusion: After undergoing the theory–practice training, participants: (a) improved their knowledge of ultrasound-guided vascular access; (b) positively evaluated the USGVC training model, in particular its utility and fidelity as compared with cannulation in pediatric patients; and (c) achieved a high USGVC success rate in a relatively short time.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed298    
    Printed13    
    Emailed0    
    PDF Downloaded18    
    Comments [Add]    

Recommend this journal